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Abstract

We present a geometry-driven, robust point-tracking frame-
work that improves tracking accuracy in videos by enforc-
ing epipolar constraints. While modern trackers such as
CoTracker achieve impressive results, they often exhibit ge-
ometric drift and produce correspondences that violate fun-
damental principles of multi-view geometry. We address
this in two complementary ways: (1) a sequential refine-
ment module that corrects correspondences frame-by-frame
to satisfy epipolar constraints, and (2) a CoTracker finetun-
ing strategy that incorporates a soft epipolar loss on rigid
regions of the scene. Both our post-processing approach
and our finetuned model reduce geometric drift and improve
multi-view consistency, particularly on long sequences with
significant camera motion. Although enforcing geomet-
ric consistency can slightly reduce standard tracking met-
rics, it yields significantly lower geometric error on long-
horizon videos. Importantly, our post-processing frame-
work is model-agnostic and can be integrated with any
point-tracking system.

1. Introduction

Point tracking in videos is a fundamental problem in com-
puter vision with applications ranging from motion analysis
and video editing to 3D reconstruction and augmented re-
ality. Recent advances in deep learning have led to highly
accurate tracking systems such as CoTracker [10], which
can track dense point correspondences across long video
sequences. However, despite their impressive performance,
these learned trackers can still produce tracks that violate
fundamental geometric constraints, particularly in scenar-
ios with significant camera motion.

Geometric Drift in Point Tracking When tracking
points across multiple frames, correspondences must satisfy
the epipolar constraint: corresponding points in two views

* Equal contribution, alphabetical by last name.

Figure 1. Point tracking can cover both foreground and back-
ground points and cover both rigid and non-rigid transformations.

lie on corresponding epipolar lines defined by the funda-
mental matrix. While deep learning trackers learn power-
ful appearance-based features, they may drift geometrically
over time, accumulating errors that violate these constraints.
This geometric drift becomes particularly problematic in
long sequences or when tracking through challenging con-
ditions such as occlusions, motion blur, or textureless re-
gions. We see a quantitative example of this in Figure 2.
We also believe that in general, epipolar constraints offer a
smaller search space for models to find correspondences in.
We believe this also helps the model reduce drift.

Epipolar Constraints for Refinement The fundamen-
tal matrix encodes the geometric relationship between two
views of a scene. This gives us a constraint for validat-
ing and correcting point correspondences. Given a funda-
mental matrix F between two frames, any correspondence
(wg, z) must satisfy 27 Fzo = 0, meaning point z; lies on
the epipolar line Fxq. In our iterative approach, we leverage
this constraint to refine tracks by iteratively correcting cor-
respondences to minimize their distance to epipolar lines.



The contributions of our work are summarized as follows:

e We present an iterative epipolar refinement framework
that post-processes tracks from any point tracker to en-
force geometric consistency. The method uses RANSAC-
based fundamental matrix estimation and distance-based
correction to iteratively refine correspondences.

* We introduce a teacher-student based soft-epipolar con-
straint finetuning that jointly minimizes epipolar errors
across all frame pairs while teaching the student model
to implicitly seperate static and dynamic components in
the scene.

2. Related Work

Point Tracking Methods Point tracking has been ex-
tensively studied in computer vision, with approaches
ranging from classical optical flow methods [8] to modern
deep learning-based trackers. Recent transformer-based
models like CoTracker [10], TAPIR [3], and PIPs [6] have
achieved state-of-the-art performance by jointly tracking
multiple points and leveraging temporal context. However,
these methods primarily rely on appearance matching and
learned features, without explicitly enforcing geometric
constraints that govern multi-view correspondences on
static components of the scene.

Epipolar Geometry and Fundamental Matrix The
fundamental matrix is a fundamental concept in multi-view
geometry that encodes the relationship between two views
of a scene [7]. It relates corresponding points through
the epipolar constraint: /7 Fz = 0, where = and 2’ are
corresponding points in homogeneous coordinates. The
fundamental matrix can be estimated from point correspon-
dences using methods such as the 8-point algorithm [11] or
robust estimation techniques like RANSAC [4]. Our work
leverages these classical techniques to refine modern deep
learning trackers.

Geometric Consistency in Tracking Several works
have explored incorporating geometric constraints into
tracking pipelines. Some methods use epipolar constraints
for outlier rejection [13] or as part of structure-from-motion
pipelines [12]. However, most deep learning trackers
treat tracking as a purely appearance-based problem.
Recent work has explored combining learned features
with geometric constraints [14], but these use heavy 3D
triangulation based strategies to implicitly model the scene
geometry.

Post-Processing and Refinement Post-processing tech-
niques have been widely used to improve tracking results,
including temporal smoothing [2], Kalman filtering [9], and
optical flow refinement [1]. However, these methods typi-
cally focus on temporal consistency rather than geometric

constraints. Our method specifically addresses geometric
drift by enforcing epipolar constraints, which is particularly
important for applications requiring geometric accuracy
such as 3D reconstruction or camera pose estimation.

3. Methodology
3.1. Post-Processing Approach

As shown in Figure 3, our epipolar refinement framework
consists of two main stages that are iterated repeatedly: es-
timation of the fundamental matrix per frame pair and out-
lier correction. The pipeline proceeds through the follow-
ing steps. First, we estimate fundamental matrices between
frame 0 and each subsequent frame using RANSAC. Next,
we iteratively refine tracks by correcting correspondences
to minimize their distance to epipolar lines. Then, we resti-
mate F;; with a tighter threshold until convergence.

As for our second approach, we take inspiration from
the soft epipolar constraint defined in ROMO (Robust Mo-
tion Segmentation Improves Structure from Motion) [5].
We use this to define L.p; that we combine with Leotpqck
(or Lgynamic)to finetune our model on the Tap-Vid DAVIS
dataset.

3.1.1. Fundamental Matrix Estimation

Given tracks from a point tracker, we first estimate fun-
damental matrices between frame 0 and each subsequent
frame t € {1,2,...,T — 1}. For each frame pair (0, ), we
extract mutually visible correspondences and use RANSAC
to robustly estimate the fundamental matrix.

The RANSAC algorithm proceeds as follows. We ran-
domly sample 8 point correspondences that are mutually
visible in both framesand compute the fundamental ma-
trix using the 8-point algorithm. We count inliers, which
are correspondences with epipolar error below threshold
7. This process repeats until the confidence threshold is
reached or maximum iterations are exceeded. Finally, we
refine the fundamental matrix using all inliers.

The epipolar error for a correspondence (g, ;) is com-
puted as:

|z} Fao

(Fzo)7 + (Fo)3

6]

depipolar =

where (Fz); denotes the i-th component of the epipolar
line vector.

3.1.2. Sequential Refinement

After estimating the fundamental matrices, we iteratively
refine tracks to satisfy epipolar constraints. For each itera-
tion k € {1,2,..., K}, we re-estimate fundamental matri-
ces from the current tracks using RANSAC. For each frame
pair (0,¢) and each visible correspondence n, we compute

the epipolar line in frame ¢ as 1’ = Fxén).



Geometric Drift: Mean Epipolar Error Across Frame Pairs (0 = N, Initial Tracks)
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Figure 2. A quantitative look at epipolar drift over time. This is averaged over 300 samples across around 100 frames. Notice that the mean
(top) and the median (bottom) increase over time. This suggests that there’s a consistent increase in geometric drift over time.

Rather than directly projecting XE”) onto this line, we

now perform a SIFT-based local search: we extract a SIFT

descriptor at the reference location in frame O and search

for the best-matching SIFT feature within a 20-pixel win-

dow centered on the epipolar line in frame ¢. The result-

ing matched location is taken as the refined correspondence
(n)*

x; .

If no reliable SIFT match is found, we fall back to geo-
metric refinement by computing the projection of xin) onto
the epipolar line. Given I = [a, b, c|” (where ax+ by +c =

0) and point (zg, o), the closest point on the line is:

b(bxg — ayg) — ac

sy = 200 ®
a(ayg — bxg) — be
Yproj = a2 T B2 (3)

We then directly update the correspondence as

Xgn) — Xgn)* .

3.2. Weak Supervision Approach

Our finetuning pipeline extends the standard CoTracker
training procedure to incorporate weak supervision signals
derived from epipolar-informed motion masks computed
using ROMO. Instead of explicitly segmenting the input
using the static and dynamic motion masks we get from
ROMO, we employ a teacher-student setup: the student
learns to separate static and dynamic components while cor-
recting geometric drift in static points based on the teacher’s
predictions.

Inspired by ROMO, given two consecutive frames I;
and I;1, we compute forward and backward optical flow,
fi—t+1 and fiy1-4, to establish coarse correspondences:

X[ & Xpi1 + fro1ot(Xep1)-

“)
Forward-backward consistency is then used to filter high-
confidence static points:

xi & Xt + froer1 (Xe),

| frtr1(x¢) + frr1oe(Xe + fro (%)) <e. (5)
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Figure 3. Our post-processing pipeline. We first estimate Fibj“t based on frame pairs and their respective inliers. Once this is done, we
”snap” outliers to it’s corresponding epipolar line I’ = F'x using approach (a) outlined below.

x(t) = @ + t(z —xp)

. Epipolar
Line

y(t) = yo + t{y1 — yo)

O xt - [7)] -

o |:ID Ft(z — zo}}

0 + t(y1 — o)

(a) Our approach to “correct” correspondences in the iterative approach. We
do a linear search using SIFT features between features on the line and the
outlier point to find the correct correspondence and “snap” it to correct the
geometry.

These filtered static correspondences are then used to esti-
mate a robust fundamental matrix F' via RANSAC.

We evaluate the epipolar residual on the teacher’s pre-

: : teacher.
dicted points x; 79"

T(Xteacher) _ (

teacher\ T
t+1 X 17") Fxy,

(6)

and define the Sampson-normalized epipolar loss for static
points:

o 1 T(Xttejclher)2 -
epi — .
|Mstatic| X6 Maie ||Fxt||2 + ||FTX;eiclher||2

The overall weak supervision loss combines teacher

Epipolar d— laz) + by + |
- Hine VaZ + 52
" Snapped . b(bxz1 — ay) — ac
r a? + b2
Initial o
Preciction, — 2@~ bz1) ~be
=~ a? + b2
\

(b) Our initial approach involved snapping the outliers to the closest point on
the epipolar line. However, this destroys correspondence and leads to highly
noisy estimates of /. This would ofen lead to large spikes in the optimization
that prevented convergence.

guidance and epipolar correction:

Linotion = >\epi Lepi

1
+ Agyn ————
an |Mdynamic| Z

X € Maynamic

e = 03

®)

where X1 is the student prediction, \cp; weights the epipo-
lar correction, and Mgy, < 1 downweights dynamic points.
This allows the student to correct geometric drift in static
points while retaining teacher knowledge. Note that the
second component of the loss is what we loosely refer to
as Lcotrack-

Inference. After training, the student has learned to
internally distinguish static and dynamic points. Motion
masks are no longer required, and the model can pre-
dict geometrically consistent trajectories directly from input
frames.



Geometric Drift: Mean Epipolar Error Across Frame Pairs (0 = N)
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Figure 4. We also compare the average epipolar error improvement as a function of number of frames for which the points are tracked.
Overall, with our post-processing approach, we note that the error is consistently reduced through the entirety of the video.

4. Implementation Details

4.1. Post-Processing Refinement with SIFT

We implement the iterative refinement module as a
lightweight post-processing stage applied to initial CoTrack
correspondences. After extracting CoTrack keypoints we
estimate pairwise fundamental matrices between adjacent
frames using RANSAC with an epipolar error threshold of
0.3 pixels, confidence 0.99, and a maximum of 8000 itera-
tions. For each matched point, we compute the correspond-
ing epipolar line and project the observed keypoint onto this
line to obtain a geometrically consistent corrected location.
The keypoint position is then updated by moving outlier to
this updated correspondence along the epipolar line.
Following iterative refinement, we perform global op-
timization to jointly minimize epipolar errors across the
entire sequence. This stage solves a least-squares objec-
tive using gradient descent with a global learning rate of
ag = 0.05 for 10 iterations. Joint optimization substantially
reduces long-range drift, producing globally consistent cor-

respondence trajectories. For typical videos with 7' = 100
frames and 5k—20k SIFT matches per frame, the total run-
time is approximately 20—60 seconds on a modern CPU.

4.2. Model Finetuning

Training is performed on the TAP-Vid DAVIS dataset with
frames cropped and resized to 384 x 512 resolution and
sequence lengths of 80 frames for offline models. Pre-
computed motion masks include high-confidence dynamic
regions, low-confidence static regions, and trusted-frame
annotations. Model finetuning is implemented in PyTorch,
with the student CoTracker initialized from the pretrained
teacher weights. We use the AdamW optimizer with weight
decay 10~° and a learning rate of 5 x 10~° for finetuned lay-
ers, following a cosine annealing schedule. Training uses a
batch size of 1 sequence per GPU for 1,000 steps, across
8 GPUs (20GB VRAM each) with evaluation and check-
pointing every 35 stepss.
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Figure 5. Geometric error over time for a larger TAP-Vid subset, demonstrating reduced drift after finetuning.

5. Experiments

5.1. Setup

We evaluate both post-processing refinement and direct
finetuning on challenging video sequences containing both
rigid and non-rigid motions over long temporal spans (80+
frames). The baseline is the CoTracker3 offline model.
Evaluation metrics include mean and median epipolar er-
ror, which measure the distance from predicted correspon-
dences to the corresponding epipolar lines in pixels. For
finetuning experiments, models are trained on TAP-Vid
DAVIS using weak supervision masks derived from epipo-
lar geometry analysis to encourage geometrically consistent
predictions.

5.2. Metrics

Epipolar Error. Epipolar error quantifies how well a pre-
dicted correspondence satisfies the multi-view geometric
constraints imposed by the estimated fundamental matrix.
For a correspondence (x, x’) and fundamental matrix F', the

error is computed as the point-to-epipolar-line distance:

’x’ F X‘
(Fx)7 + (Fx)3
The mean and median epipolar error are reported across all
visible correspondences in the video. Lower values indicate
correspondences that better respect the underlying camera

geometry, reflecting improved tracking accuracy and geo-
metric consistency after refinement.

depi (X, X/) =

(msg. (5§ng evaluates spatial localization accuracy on points
that are visible. For each visible point 7 in frame ¢, let x! be

the predicted location and xz’gt the ground truth. Then

)

. t,
P R e PR

! 0, otherwise

)

where 7 is a fixed pixel threshold. The average over all
visible points and frames gives

. 1
o = 3l
avg ijs ; (2



Higher values indicate more precise and stable localization
of visible points, particularly on dynamic objects or small
structures.

Occlusion Accuracy (OA). Occlusion Accuracy mea-
sures the correctness of visibility predictions. Let v! €
{0,1} denote the predicted visibility of point ¢ at frame ¢
and vf’gt the ground truth visibility. OA is defined as

1
OA = N 1(vf = v)'®),
total it

where Ny, is the total number of point-frame pairs. A
higher OA indicates that the model correctly identifies oc-
cluded and visible points, reducing errors caused by track-
ing points that are not observable.

Average Jaccard (AJ). AJ quantifies the temporal con-
sistency of predicted visibility. For each point i, let VV; and
V;gt be the sets of frames in which the point is predicted as
visible and ground-truth visible, respectively. Then the Jac-
card overlap for point 7 is

_vin Ve

Jaccard; = ————,
LoV

and the average over all points gives
1
Al = N XZ: Jaccard;.

Higher AJ values indicate that predicted visibility trajecto-
ries closely match the ground-truth track lifetimes, reflect-
ing reliable long-term tracking.

6. Results

6.1. Post-Processing: Quantitative Results

Post-processing refinement consistently improves epipolar
accuracy across the dataset. Table | reports the mean and
median epipolar errors before and after refinement, along
with the absolute reduction A in pixels. Across all se-
quences, refinement reduces the mean epipolar error by
23.38 pixels and the median error by 5.04 pixels, demon-
strating substantial improvements in geometric consistency.

Metric Before | After A
Mean epipolar error (px) 2392 | 0.54 | 23.38
Median epipolar error (px) | 5.69 0.65 5.04

Table 1. Dataset-wide epipolar errors before and after post-
processing refinement, with absolute reduction A in pixels.

Specifically, we note that the mean sees a substantial de-
crease do to there being some outlier points with large drifts

from it’s original tracks. Since the mean is sensitive to these
outlier, it notices a significantly larger error drop due to our
outlier correction based post-processing.

6.2. Post-Processing: Qualitative Results

To validate the improved geometric performance, we com-
pare the initial tracks with the post-processed tracks. Over-
all, the post-processing approach improves the early frames
of the video, yielding more geometrically consistent tracks,
as illustrated in Figure 7.

While the early-frame improvements are clear, we ob-
served an unexpected behavior in later frames (after frame
70). Despite a noticeable reduction in epipolar error ini-
tially, the post-processing occasionally introduces large er-
rors later in the video, which can significantly degrade track
quality. This is likely due to our assumption that only a
small subset of tracks drift over time. When the majority
of tracks drift, even the best estimation of the fundamental
matrix based on the inliers can become incorrect. As a re-
sult, although the measured epipolar error remains low, the
underlying geometry may be misaligned.

Figure 6 visualizes this failure case for the same se-
quence shown in Figure 7. It highlights that while post-
processing generally improves early-frame consistency, at-
tention must be given to late-frame drift to ensure robust
geometric tracking throughout the entire sequence.

Frame 84
Red: Original

Figure 6. Failure case in later frames after post-processing. Large
late-frame drift can cause geometric inconsistencies despite ini-
tially low epipolar errors.



Frame 10

Frame 12

Figure 7. Qualitative comparison between initial tracks and post-
processed tracks. Post-processing improves geometric consistency
in the early frames.

6.3. Finetuning: Quantitative Results

We evaluate our finetuned model using TAP-Vid DAVIS
metrics and epipolar error, comparing it against existing
tracking methods. Table 2 presents all metrics together.
Compared to the CoTracker3 baseline, finetuning with weak
supervision leads to a small drop in visible-point local-
ization (from 77.3% to 75.1%), occlusion accuracy (from
91.8% to 90.5%), and temporal track consistency (from
64.5% to 62.7%). However, the mean and median geomet-
ric errors improve significantly, from 3.24 px to 2.41 px and
from 2.18 px to 1.58 px, respectively.

Our finetuned model with weak supervision reduces the
mean and median epipolar errors by roughly 25% compared
to the baseline. To visualize how these metrics evolve dur-
ing training, we plot their progression over 1000 finetuning
steps in Figure 8.

Similar to the post-processing analysis, we also visual-
ize the geometric errors over time for a larger subset of the
TAP-Vid dataset in Figure 5, highlighting the reduced drift
achieved by our finetuned model.

6.4. Finetuning: Qualitative Results

While the epipolar errors decrease consistently, the qualita-
tive improvements remain limited. In the examples shown
in Figure 9, we observe small, geometrically consistent cor-
rections in static regions. However, these adjustments also
propagate into dynamic, non-rigid regions, unintentionally
distorting object motion. Furthermore, as illustrated in Fig-
ure 10, the predicted correspondences become unstable in
sequences with mostly static scenes or very small camera
motion, suggesting that the weak supervision signal alone
is insufficient to reliably guide the model in low-motion sit-
uations.
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Figure 8. Evolution of tracking metrics (visible-point localization,
occlusion accuracy, temporal track consistency, and geometric er-
ror) over 1000 finetuning steps.

Figure 9. Qualitative result 1: Geometrically consistent correc-
tions are visible in static regions, but dynamic regions are nega-
tively affected.

Figure 10. Qualitative result 2: Correspondences degrade in sce-
narios with minimal motion, revealing instability under weak su-
pervision.

7. Discussion

Our main idea was to use a student—teacher setup where the
teacher tracks points normally, while the student receives
additional supervision on static regions through an epipolar
correction step. In principle, this should help the student
(a) learn to separate static and dynamic parts of the scene



Method (msg (%) | OA (%) | AJ (%) | Mean Error (px) | Median Error (px)
PIPs 64.0 77.0 63.5 4.87 342
TAPIR 62.9 88.0 73.3 3.95 2.76
CoTracker3 (baseline) 71.3 91.8 64.5 3.24 2.18
CoTracker3 + Finetune (ours) 75.1 90.5 62.7 2.41 1.58
Ours + Post-processing 75.8 90.3 63.1 1.31 0.89

Table 2. Comparison of point tracking methods on TAP-Vid DAVIS. 6;@2 measures visible-point localization, OA measures occlusion
accuracy, AJ measures temporal track consistency, and Mean/Median Errors measure geometric consistency. PIPs and TAPIR values are

taken from their respective TAP-Vid benchmark repositories.

.’),‘1’\3

Figure 11. Example failure case: RANSAC-based motion mask
incorrectly marking static background regions as dynamic, caus-
ing noisy supervision.

and (b) enforce epipolar consistency only where it is valid.
However, our experiments show that this approach did not
improve results as much as expected.

We believe there are two main reasons for this. First, the
RANSAC-based masks used to separate static and dynamic
points are often very noisy (Figure ??). In many sequences,
parts of the static background get mislabeled as dynamic,
which confuses the student model during training. Since the
student relies on these masks to understand where epipolar
geometry should hold, incorrect masks directly hurt learn-
ing. More reliable masking strategies or multi-frame con-
sistency checks would likely help.

Second, our training setup is relatively small. We fine-
tuned CoTracker on the TAP-Vid DAVIS dataset for only
1,000 steps. This dataset is small compared to the large-
scale data used in models like DepthAnythingV2, which
use millions of examples in their teacher—student training
schemes. Because of this, the student model may not have
enough data to learn the intended behavior, especially the
separation between static and dynamic motion.

8. Conclusion

In this project, we explored two ways to improve point
tracking using epipolar geometry. The first is a post-
processing method that corrects predicted tracks by esti-
mating a fundamental matrix between frames and reducing
epipolar error. The second is a finetuning method that tries
to teach the model to use epipolar geometry directly during
training through weak supervision.

Our results show that post-processing is consistently ef-
fective: it reduces geometric drift and lowers epipolar error
by 40-60% across several videos. The finetuning approach

also improves geometric consistency but is more sensitive
to data scale and the quality of the motion masks. Com-
bining both methods gives the best performance among our
experiments.

Even though the finetuning method did not work as well
as expected, it gives useful insight into how geometric pri-
ors can be incorporated into point tracking models. Future
improvements could include better motion mask estimation,
training on larger datasets, or incorporating additional con-
straints like homographies for planar regions. Overall, this
project shows that combining learned tracking with geomet-
ric consistency is a promising direction for improving long-
range, drift-free point tracking.
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